A Brief Introduction To Calorimetry

Nils Feege

Stony Brook Local Meeting February 21, 2014

Calorimeters are used everywhere

Calorimeters measure particle energies by total absorption

Why Calorimeters?

• Momentum (tracker) and energy (calorimeter) resolutions:

- Measure charged and neutral particle (and 'missing') energy.
- Fast signal generation.

Muon Energy Loss

Electron / Positron Energy Loss

Photon Energy Loss

Anatomy of an electron / photon cascade

Longitudinal Cascade Development

Cascade depth ~In(E) makes calorimetry feasible!

Basic Calorimeter Types

Homogeneous

CMS ECAL: PbWO₄

PHENIX ECAL: Pb / Scintillator

Anatomy of a hadronic cascade

→ Very large fluctuations from one cascade to another.

Calorimeter response to pions

$$f_{em} = I - \left(\frac{E}{IGeV}\right)^{-\kappa}$$

$$\frac{E_{rec}^{\pi}}{E_{beam}} = \mathbf{e} \cdot f_{em} + \mathbf{h} \cdot (\mathbf{I} - f_{em})$$

CALICE Analog Hadron Calorimeter

I prototype (I m³)

- 38 sensitive layers (scintillator, 5 mm)
 + absorber (steel, 2 cm)
 - 216 scintillator tiles (3x3 ... 12x12 cm²)
 - I photodetector (SiPM, IxI mm²)

~ 8 000 read-out channels

The Dawn of 3D Imaging Calorimetry

EIC PbWO4 EMCAL in Geant4

ePHENIX Calorimeters

Summary

- Energy measurements with calorimeters play an important role in various fields.
- Basic principle: Generated signal ~ deposited Energy.
- Calorimetry for hadrons more challenging than for electrons / photons because of
 - large fluctuations
 - + 'invisible' energy depositions

Recommended Resources

- * K. Nakamura et al., "Review of Particle Physics," J. Phys., vol. G37, p. 075021, 2010 (http://pdg.lbl.gov/).
- * N. Feege, "Low-energetic Hadron Interactions in a Highly Granular Calorimeter," Ph.D. dissertation, University of Hamburg, 2011, DESY-THESIS-2011-048 (http://www-library.desy.de/preparch/desy/thesis/desy-thesis-11-048.pdf).
- * R. Wigmans, "Calorimetry," Scientifica Acta 2, No. 1, 18 55, 2008.
- * R. Wigmans, *Calorimetry*, 1st ed. Oxford University Press, 2000.